Speedup Matrix Completion with Side Information: Application to Multi-Label Learning
نویسندگان
چکیده
In standard matrix completion theory, it is required to have at least O(n ln n) observed entries to perfectly recover a low-rank matrix M of size n × n, leading to a large number of observations when n is large. In many real tasks, side information in addition to the observed entries is often available. In this work, we develop a novel theory of matrix completion that explicitly explore the side information to reduce the requirement on the number of observed entries. We show that, under appropriate conditions, with the assistance of side information matrices, the number of observed entries needed for a perfect recovery of matrixM can be dramatically reduced to O(lnn). We demonstrate the effectiveness of the proposed approach for matrix completion in transductive incomplete multi-label learning.
منابع مشابه
Material of “ Speedup Matrix Completion with Side Information : Application to Multi - Label Learning ”
متن کامل
Convex Co-Embedding for Matrix Completion with Predictive Side Information
Matrix completion as a common problem in many application domains has received increasing attention in the machine learning community. Previous matrix completion methods have mostly focused on exploiting the matrix low-rank property to recover missing entries. Recently, it has been noticed that side information that describes the matrix items can help to improve the matrix completion performanc...
متن کاملMulti-view Weak-label Learning based on Matrix Completion∗
Weak-label learning is an important branch of multi-label learning; it deals with samples annotated with incomplete (weak) labels. Previous work on weak-label learning mainly considers data represented by a single view. An intuitive way to leverage multiple features obtained from different views is to concatenate the features into a single vector. However, this process is not only prone to over...
متن کاملHigh Rank Matrix Completion with Side Information
We address the problem of high-rank matrix completion with side information. In contrast to existing work dealing with side information, which assume that the data matrix is low-rank, we consider the more general scenario where the columns of the data matrix are drawn from a union of lowdimensional subspaces, which can lead to a high rank matrix. Our goal is to complete the matrix while taking ...
متن کاملLow-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification
Multi-label image classification is of significant interest due to its major role in real-world web image analysis applications such as large-scale image retrieval and browsing. Recently, matrix completion (MC) has been developed to deal with multi-label classification tasks. MC has distinct advantages, such as robustness to missing entries in the feature and label spaces and a natural ability ...
متن کامل